Subspace Identification of Multivariable Hammerstein and Wiener Models

نویسندگان

  • Juan C. Gómez
  • Enrique Baeyens
چکیده

In this paper, subspace-based algorithms for the simultaneous identification of the linear and nonlinear parts of multivariable Hammerstein and Wiener models are presented. The proposed algorithms consist basically of two steps. The first one is a standard (linear) subspace algorithm applied to an equivalent linear system whose inputs (respectively outputs) are filtered (by the nonlinear functions describing the static nonlinearities) versions of the original inputs (respectively outputs). The second step consists in a 2-norm minimization problem which is solved via a Singular Value Decomposition. Copyright ©2002 IFAC

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Subspace Identification of Periodically Switching Hammerstein-wiener Models for Magnetospheric Dynamics

Two existing Hammerstein-Wiener identification algorithms and a third novel Hammerstein-Wiener identification algorithm are considered for application to the magnetospheric system. A modified subspace algorithm that allows missing data points is described and used for identifying periodically switching Hammerstein-Wiener models, to capture the periodically time-varying nature of the system. The...

متن کامل

Identification of Hammerstein-Wiener models

This paper develops and illustrates a new maximum-likelihood based method for the identification of Hammerstein–Wiener model structures. A central aspect is that a very general situation is considered wherein multivariable data, non-invertible Hammerstein and Wiener nonlinearities, and coloured stochastic disturbances both before and after the Wiener nonlinearity are all catered for. The method...

متن کامل

Discussion on: "Subspace-based Identification Algorithms for Hammerstein and Wiener Models"

1. Pearson RK. Selecting nonlinear model structures for computer control. J Process Control 2003; 13: 1–26 2. Bloemen HHJ, Chou CT, van den Boom TJJ, Verdult V, Verhaegen M, Backx TC. Wiener model identification and predictive control for dual composition control of a distillation column. J Process Control 2001; 11: 601–620 3. Westwick D, Verhaegen M. Identifying MIMO Wiener systems using subsp...

متن کامل

Hammerstein and Wiener Model Identification Using Rational Orthonormal Bases

In this paper, non iterative algorithms for the identification of (multivariable) Hammerstein and Wiener systems are presented. The proposed algorithms are numerically robust, since they are based only on least squares estimation and singular value decomposition. For the Hammerstein model, the algorithm provides consistent estimates even in the presence of coloured output noise, under weak assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002